Math 3450 - Homework \# 1 Set Builder Notation

1. Find all the elements from the set $\left\{n \in \mathbb{Z} \mid 1 \leq n^{2} \leq 100\right\}$.

Solution: $-10,-9,8,-7,-6,-5,-4,-3,-2,-1,1,2,3,4,5,6,7,8,9,10$
2. Let $X=\left\{x \in \mathbb{R} \mid x^{2}+1=0\right\}$. What set is X equal to?

Solution: There are no real numbers x with $x^{2}+1=0$. Hence, $X=\emptyset$.
3. Find all the elements in the set $A=\left\{x \in \mathbb{N} \mid x^{2} \leq 9\right\}$.

Solution: Recall that $\mathbb{N}=\{1,2,3,4,5,6, \ldots\}$. The only elements $x \in \mathbb{N}$ with $x^{2} \leq 9$ are $x=1, x=2$, and $x=3$. Hence $X=\{1,2,3\}$.
4. Let $S=\{1,5,7\}$ and $T=\{-1,0,10,5\}$. Find all the elements in the set $X=\{a+b \mid a \in S, b \in T\}$.

Solution:

$$
\begin{aligned}
X= & \{1+(-1), 1+0,1+10,1+5 \\
& 5+(-1), 5+0,5+10,5+5, \\
& 7+(-1), 7+0,7+10,7+5\} \\
= & \{0,1,11,6,4,5,15,10,6,7,17,12\} \\
= & \{0,1,4,5,6,7,10,11,12,15,17\}
\end{aligned}
$$

5. Let $S=\{1,5,7\}$. Find all the elements in the set $Y=\left\{a^{2} \mid a \in S\right\}$.

Solution: $Y=\left\{1^{2}, 5^{2}, 7^{2}\right\}=\{1,25,49\}$
6. List 5 elements from the set $S=\{2 x-3 y \mid x, y \in \mathbb{Z}\}$.

Solution: 5, 2, -1, -7 , and -2 are all elements in S. This is because $5=2(1)-3(1), 2=2(1)-3(0),-1=2(7)-3(5),-7=2(-2)-3(1)$, and $-2=2(2)-3(2)$.
7. Suppose that k is some fixed integer. List 10 elements from the set $S=\{x k \mid x \in \mathbb{Z}\}$.
Solution: $k, 2 k, 3 k, 10 k, 104 k,-k,-7 k,-81 k, 1765 k,-100 k$ are all elements of S.
Note that if $k=0$, then these are all the same.
8. Suppose that r and s are two fixed integers. List 10 elements from the set $A=\{x r+y s \mid x, y \in \mathbb{Z}\}$.

Solution: $r+s, 2 r-5 s, 3 r+6 s, 4 r-10 s, 5 r=5 r+0 s, s=0 r+s, 7 r-$ $109 s, 8 r+15 s, 9 r-163 s, 10 r+s$ are all elements of S.
9. Use set-builder notation to write the set of all positive odd numbers.

Solution: Possible answer: $\{2 k-1 \mid k \in \mathbb{N}\}$. This works because

$$
\begin{aligned}
\{2 k-1 \mid k \in \mathbb{N}\} & =\{2(1)-1,2(2)-1,2(3)-1,2(4)-1, \ldots\} \\
& =\{1,3,5,7, \ldots\} .
\end{aligned}
$$

